State space blind source recovery for mixtures of multiple source distributions
نویسندگان
چکیده
The paper discusses State Space Blind Source Recovery (BSR) for minimum phase and non-minimum phase mixtures of gaussian and non-gaussian distributions. The State Space Natural Gradient approach results in compact iterative update laws for BSR. Two separate state space algorithms for minimum phase and non-minimum phase mixing environments are presented. The advantages and disadvantages of both algorithms in the context of multiple source distribution mixtures are examined. The presented BSR algorithms require use of nonlinearities, which depend on the distribution of the unknown sources. We propose use of an adaptive non-linearity based on the batch kurtosis of the output. This renders the adaptive estimation of the demixing network to be completely blind.
منابع مشابه
Model selection using limiting distributions of second-order blind source separation algorithms
Signals, recorded over time, are often observed as mixtures of multiple source signals. To extract relevant information from such measurements one needs to determine the mixing coefficients. In case of weakly stationary time series with uncorrelated source signals, this separation can be achieved by jointly diagonalizing sample autocovariances at different lags, and several algorithms address t...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملBlind Deconvolution of Sources in Fourier Space Based on Generalized Laplace Distribution
An approach to multi-channel blind deconvolution is developed, which uses an adaptive filter that performs blind source separation in the Fourier space. The approach keeps (during the learning process) the same permutation and provides appropriate scaling of components for all frequency bins in the frequency space. Experiments indicate that Generalized Laplace Distribution can be used effective...
متن کاملBlind Source Separation Using Mixtures of Alpha-Stable Distributions
We propose a new blind source separation algorithm based on mixtures of alpha-stable distributions. Complex symmetric alpha-stable distributions have been recently showed to better model audio signals in the time-frequency domain than classical Gaussian distributions thanks to their larger dynamic range. However, inference of these models is notoriously hard to perform because their probability...
متن کامل